Maslovella africana PIENAAR, 1968

Description:

Diagnosis: Circular to subcircular asymmetrical coccolith composed of two well-developed shields. At the locality of the axial pore the central area is infilled with crystals of calcium carbonate. The distal shield is larger than the proximal shield and is placed asymmetrically on top of it.

Description: The distal shield is composed of 25-29 overlapping plates, the average number of plates being 25. The plates are wedge-shaped and those situated at the longitudinal polar regions are larger and more markedly wedge-shaped than the remaining plates. The proximal shield is smaller than the distal shield and composed of 25-29 plates of variable size. In the region of the one longitudinal pole are wedge-shaped plates which are only a little smaller than the distal shield plates. At the opposite longitudinal pole all the plates are smaller and less than half the size of the distal shield plates. The central area is infilled with irregularly arranged crystals of calcium carbonate.

Size: Longitudinal axis, 3·1-3·2 μ. Transverse axis, 2·5-2·7 μ. Proximal shield, 1·9-2·6 μ x 2·75-2·9 μ. Distal shield, 3·1-2·5 μ x 4·1-3·7 μ.
Remarks:

Masiovelia africana is common in most of the assemblages studied and characterized by the asymmetrically placed shields. It is tentatively placed in the genus *Masiovelia* TAPPAN & LOEBLICH, 1966 which it most closely resembles. Black, however, did not mention in his description of the type specimen any asymmetry in the genus, and thus a new genus might have to be erected. This form has also been found by the author in Type Maestrichtian material sent to him by Dr. E. Martini.

Type level:

Upper Cretaceous.

Type locality:

Borehole 'A', Lake Sibaya, Zululand, South Africa. Assemblage 1387, depth 320 ft.

Depository:

Department of Plant Biology, University of Natal, Durban, South Africa.

Holotype: plate 69, fig. 8; plate 70, fig. 6; plate 71, figs. 3, 5.

Author:

Pienaar R.N., 1968, p. 365; pl. 69, fig. 8; pl. 70, fig. 6; pl. 71, figs. 3, 5.

Reference: